资讯中心

铁基合金概述及元素的主要作用

发布时间: 03-25

一、概述
       严格来说,钢铁材料也属于铁基合金,但工程上通常将两者区别开来。铁基合金是指那些刻意加入金属合金元素,形成置换固溶体的合金,非金属碳引起的所有强化效应是次要的。

最典型的时效硬化型铁基合金是马氏体时效钢(18Ni型)。其碳的质量分数极低,不超过0.03%,加入大量的Ni,空冷至室温就能获得板条马氏体,因碳的质量分数低,马氏体强度硬度并不高,但韧性良好。在450~500℃时效处理,合金元素首先在位错处偏聚形成“气团”,再以“气团”为核心析出Ni2M、Ni3M(M代表其他金属合金元素)型金属间化合物,沉淀强化使钢的屈服强度提高到1400~3500MPa。马氏体时效钢有3种强化机制:沉淀强化、固溶强化和相变强化(马氏体),其中沉淀强化的贡献最大。

沉淀强化效果来自:
       (1)溶质原子向位错偏聚;
       (2)大量细小、弥散分布、高硬度的金属间化合物。


      二、合金元素的主要作用

       1.对钢力学性能的影响

(1)固溶强化 合金元素溶于铁素体时,有固溶强化作用。合金元素的晶格类型、原子直径与α-Fe不同或相差较大时,对铁素体的强化作用较为明显,反之则强化作用较弱。所以不同元素随含量增加对铁素体的硬度增加的贡献不同,如图所示。合金元素使铁素体固溶强化的同时,特别是合金元素含量增高的情况下,往往因铁素体晶格畸变严重,又使韧性塑性下降,如图所示。所以,要使钢具有高的综合性能,钢中加入的合金元素,应是多元少量,而不是某一元素加得越多越好。

(2)弥散强化 合金元素与碳形成碳化物,且以细小质点分布在固溶体基体上,可起弥散强化作用,使钢的硬度强度进一步提高。除以上强化作用外,当钢中碳化物数量较多时,将显著提高钢的硬度和耐磨性。有些碳化物溶点高,稳定性高,放可提高钢的热强度。

2.对Fe-Fe3C相图的影响

有些合金元素,如面心立方晶格的镍、锰、铜及非金属元素氮,可使Fe-Fe3C相图中的γ区扩大(图8—2(o)),而另一些元素,如体心立方晶格的铬、钼、钛等,可使y区缩小图s-2Cb))由于合金元素对P区的影响,导致下列变化:

(1)临界点改变

扩大γ区的元素,将降低A1、A3温度,缩小γ区的元素,将增高A3、A1温度。因此,合金钢的热处理加热温度,将相应降低或增高,与碳钢的加热温度不同。扩大γ区的元素,在一定条件下,可使γ区扩大到室温,因而可得到单相奥氏体钢。这是本章将述及到的奥氏体不锈钢的基础。缩小γ区的元素,在一定条件下,可使奥氏体相区消失而只存在铁素体相区,因而可得到单相铁素体钢。这也是工业上使用的铁素体不锈钢和耐热钢的基础。

(2)S点左移

合金元素使S点左移,因而合金钢共析体含碳量小于碳钢共析体0.77%的碳含量。例如钢中含13%Cr时,共析体的含碳虽仅为0.3%。

(3)F点左移

铁碳合金E点相应碳含量为2.11%,当钢中含有合金元索时,E点相应的碳含量小于2.11%,使合金钢在较低的碳含量下出现共晶莱氏体。

3.细化奥氏体晶粒

当合金元素形成难溶化合物(TiC、NbC、Al2O3、AlN等)时,这些化合物存在于奥氏体晶界上,机械地阻止奥氏体晶粒长大,使奥氏体冷却转变后的组织细小,因而起着细晶强化的作用。

4.提高钢的淬透性

奥氏体溶有合金元素时,其中合金元素的原子扩散能力小,而且还降低奥氏体中铁、碳原子的扩散能力,因而使奥氏体稳定性增高,不容易向珠光体转变。反映在C曲线上,使C曲线右移(Co元素例外)而使淬火临界冷却速度减小,提高淬透性。因此,合金钢不仅可提高整体截面力学性能,而且可以减小淬火变形和开裂的危险性。但是,合金元素使C曲线右移的同时,降低了Ms点。Ms点降低,会使合金钢淬火后的残余奥氏体量增加,对提高硬度和耐磨性不利。


转载请注明来自:http://www.cmmetal.cn/news/85539.html

标签:铁基合金  国机金属


热门产品

Alloy 751

注:Inconel® alloy 751是Special Metals Corp...

GH4080A

1 概述 GH4080A是以镍-铬为基体,添加铝、钛形成γ′相弥散强化的高温合金...

Alloy LF2

1 概述 气阀材料是制造汽油发动机和柴油发动机进、排气阀的必用材料,也是整个发动...